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Abstract

The state estimation problem for bilinear stochastic systems
evolving on compact Lie groups and homogeneous spaces Is
considered. The problem is motivated by some applications
involving rotational processes In three dimensions.
The theory of harmonic analysis on compact Lie groups is
used to define assumed density approximations which re-
suit in Implementabie suboptimal estimators for the state of
the bilinear system . The results of Monte Carlo simulations
are reported ; these indicate that simple filters designed by
these techniques perform well as compared to other filters .

H
• *‘J~~is work was supported by NSF under Grants GK-42090 and ENG76— 11106 ,
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It is based In part on the Ph.D. dissertation by S. Marcus submitted to
the Massachusetts Institute of Technology, Cambridge , Mass.
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I. INTRODUCTION

Fourier series analysis has been applied in several recent studies

U] - E4) to estimation problems for stochastic processes evolving on the

circle 51 Wilisky [4) used Fourier series method s to define “assumed

density” approximations for certain phase tracking and demodulation
/

problems . In fact , a system designed using these techniques performed

better than other estimators , including an optimal phase—lock loop.
In this paper we stud y bilinear sys tems evolving on compact Lie

groups or homogeneous spaces [29] . The optimal estimator is In

genera l infinite dimensional (7) , and our approach to the design of
suboptimal estimators Is a generalization of that of Willsky [4) , whose work is

reviewed - briefly in Section III . The basic approach involves the definition

of an “ assumed density” form for the conditional density of the system

s~~tè at time t given observations up to time t. These densities are defined

via the techniques of harmonic analysis on compact Lie groups (5] , (5]
(which generalize the Fourier series on the Lie group 51) • Our method differs

from most previous assumed density approximations in tha t our approximation
is defined on the appropriate compact manifold (as opposed to the usual
Gaussian approximations , for example , which are defined on IR~ (7]).

This method also avoids the problem of merely truncating higher order terms

in a harmonic expansion; as pointed out by Lo (181 and Wilisky (4], such

higher order terms will not be negligible, especially if the filter is

performing well. Por an alternative approach to discrete—time estimation

problems on Lie groups and homogeneous spaces, see the work of Lo and

Eshleman (18- 20), who use exponential Fourier densities to avoid the trun-

cation problem.

In Section II we review some general properties of stochastic

bilinear systems and discuss the estimation problem for systems evolving

2
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• on compact Lie groups and homogeneous spaces, Section III contains the

application of the technique to systems evolving on S’s, while Section IV

contains the application to systern~ on S0(n). Results of Monte Carlo

simulations of the S2 estimator are presented in Section V. Finally, the

Appendix reviews some necessary concepts from the theory of harmonic analy—

sis on compact Lie groups. Some of the concepts of this paper were intro—

duced in (21] and (22], but no simulation results were presented.
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II. ESTIMATION FOR STOCHASTIC BILINEAR SYSTEMS

The basic stochastic bilinear system (or linear system with state—

dependent noise) considered here is described by the- Ito stochastic diffe-

rential equation [4], [9—17], [2~], [25) 0 -

/

N • N
dx(t) = {[A

0 + ½ E Qi4(t)AiA4)dt + I’ A~dw1(t)}x(t) (1)
i,J=l •‘ •‘ i—i

~,here x is an n-vector or an n x n matrix,, the Ai are u x  n matrices,

is the (i,j)th element- of Q, and v is a Brownian motion (Wiener) process

inin(t,s)
with, strength Q(t) such that E[w(t)w’(s)] f Q(r)dr. Following

0

the otation of [8—il), we define 2 {AO, Al,...I AN
}
~~ to be the smallest

Lie algebra containing these matrices. The corresponding connected matrix

Lie group is denoted by G — {exp2}
G. Then, if x is an n x n matrix and

x(t0hG, the solution x(t) of (1) evolves on C (i.e., x(t)cG for all t > 0)

in the mean—square sense and almost surely (15—17]. If x is an n—vector,

0 then the solution of (1) evolves on the homogeneous space G x(t0).

Associated with the Ito equation (1) is a sequence of equations for

the powers of the state x(t) (see Brockett [9], [10]). If N(n,p) denotes

the binomial coefficient (1~~~.1) , then given an n—vector x, we define

to be the N(n,p)—vector with components equal to the monomials (homogeneous

polynomials) of degree p in X1,.,.,X~~, the components of x, scaled so that

~IX f l  ~ — IIx~~ JI . Given an m x n matrix A, we denote by A1
~~ the unique

matrix which verIfies

y — A x  4 y1~~ — A ~’~ x’~~ . 
- (2)

4
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can be interpreted as a linear operator on symmetric tensors of degree p

• (9], and is known as the symrnetrized Kronecker ~th power of A [26]. It is
c1e~r that if x satisfies the linear differential equation

,c(t) = Ax(t) - (3)

then also satisfies a linear differential equation

O ~~~
1(t~ = A x~~~(t) , (4)

[p1

- 

0 

We regard this as the definition of Ar .
~~, which is the Infinitesimal version ofr i  LPJ

ALP~. In fact, A can be easily computed from A [25].

It can easily be shown that if x satisfies (1), then x satisfies

the Ito equation

dxt
~~(t) = [A

0 + ~ (t) A~ A~ 1x~~~(t)dt + ~ A~ x~~~(t)dw1(t) (5)
0 

[p) ij= 1 ~ [p) [p) j~~ [p]

In addition , li the nxn ma trix X satisfies (1), it is easy to show thatX~~
also satisfies (5). As we shall see later in the section, this sequence of

equations is a valuable tool in the study of state estimation.

The observation model considered in this paper consists of linear
observations of the state corrupted by additive white noise, or

dz(t) = L(x(t)) d t ÷  dv(t) 
‘ 

(6)

where L is a linear operator and v is a Wiener process. This bilinear system—
linear observation model is useful in the study of certain practical problems ,

• such as the S2 satellite tracking and So(3) rigid body orientation estimation

problems discussed in (13, Ch. 4] and [21, Sec. IV].

The remainder of the paper is devoted to the study. of the estimation

problem for two classes of systems of the form (1) (6), which are motivated

by the aforementioned examples. The first system consists of the bilinear

$ state equation
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- 
dX(t) = [A

0 
+ ~ ~ Q1.(t)A1A.)X(t)dt + ~ A~X(t)dw~(t) (7)

O 

0 

i,J=1 3 i=1

with linear measurements

dz 1(t) = X(t)h(t)dt÷ R~~(t)dv(t) 
(8)

where X(t) and [A1~ 
are mm matrices, z

1
(t) is a p—vector, w is a Wiener 0

process with strength Q(t) � 0 , v is a standard Wiener process independent
1

of w, and R > 0. More general linear measurements can obviously be con—

• . sidered, but for simplicity of notation we restrict our attention to (8),

which arises in the s-tar tracking example of [13, Ch. 4]. We will make

the crucial assumption that the Lie group C {exp~ ’}~ is compact.

The second system consists of the bilinear state equation (1) with

linear measurements

dz2(t) = H(t)x(,t)dt + R¼t)dV(t) (9)

where x(t) is an n—vector, A~ are n x a matrices, and z2, v and w are as

above. It will be assumed that x evolves on a compact homogeneous space

[8], [13], [29]——i.e., the solution of (1) is

- x(t) X(t)x(O) - (10)

where X satisfies (7) with X(O) 1 and evolves on the compact Lie group

C (exp2}~ . -

It is shown in [13) that, by a linear change of basis on the state

space, (7) and Cl) can be transformed into equations which evolve on the

compact special orthogonal group SO(n) ~ {Xc]R
t
~~~tIXtX=I , det X=+1} and

the compact homogeneous space Sn-
~= {xc lx ’x l }  (the (n—l)—sphere) , respec-

tively. Hence, we need only consider systems evolving on SO(n) and

(this is equivalent to the assumption that AOIA1,..e,AN 
are skew—symmetric

01 (13]).

6
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The estimation criterion which, will be used for these two problems

is the constrained least—squares estimator, which is analogous to the cri—

ten on used in [1], (4], and [21] for the phase estimation problem. That

is, for (7).-(8) we wish to. find x ( tI  t) which minimizes the conditional error

— covariance
0 

= E[tr{(X(t) -
~ 
X(tlt))’(X(t) — X(tf t))JIz~] (11)

— 

subject to the SOCn) constraint X(t I t) ‘X(tJ t) = I, where the notation (11)

denotes the conditional expectation given the a—field a(z~) generated by

• - e observed process ~ {z1
(s) ,  0 < s < t} up to time t , For (1) , (9)

‘~eek ~(tI t) which minimizes

= E[(x(t) — ~c(t! t ) ) ’  (x(t) — ~c (tJt))Jz~] 
. (12)

subject to the S’~~ constraint !I ~cCt It ) I j 2 ~(tI t)’~ (tft) = 1.

It is easily shown f 13] that the optimal estimates are, respectively

~,‘(t It) ’±~(tIt) [~
(t ItY ~ (t ~t)]~~ , 

0 (13)

2’(t l t) = • (14) ’

where the conditional expectation Is denoted by the eqi4valent notations

~cC~t I t )  ~ E[x(t)Iz~) ~ E~[x(t)] . 
-
‘ ‘ . 

- 

(15)

-~~ The sign in (13) is chosen to insure that det X(t’
~t) +1 [23). Thus in

both cases we must compute the conditional expectation of the state (X(t) or

~~ f x(t)) given the past observations (4 = {z1(s), 
0 < s < t} or {z~Cs),

I 0< s<t}) , -

7
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- The equations for computing the conditional expectation can be derived

from the genera l nonlinear filtering equation [7] and the moment equation

(5) . The resultant equations for the SO(n) System ( 7)—(8)  ~t ie

dEt(X~~ (t)1 = [(A
0 + Q1. (t)A1 A )®I] E

t[X~~ (t)ldt
[p] i j=:i ~ [~] i [~] V

+ fE
t [X ~ (t)h’ (t)x(t) } _E t[X~ (t))h ’ (t) Et[X(t) ] 1R 1 (t)ctv1 (t) (16) 

—

dv
1
(t) = dz 1(t) - ~(t I t )h(t)dt (17)

where ® denotes Kronecker product and X~~ is the vector containing the

elements of the matrix X in lexicographic- order [26], [32, p.64] . For the
ri-iS system (1), (9) , we have

dE
t[x~~l (t)] = [J~ + Q~. (t)A1 A ]Et1x~~ (t)]dt

°[p] i,j=i ~ [p] ~[p]

+ [Et[x~~
] 
(t) x’ (t)] ~E

t[xEPl (t)lE
t[x I (t)) 1H’(t)R~~ (t)d V2 (t) (18)

dv2(t) = dz2(t) — H (t)~~(t I t ) d t  . 
. 

(19)

The structure of these equations is quite similar to that of (4]——i.e.,

each estimator consists of an infinite band of filters, and the filter for the

~th moment is coupled only to those for the first and (p+l)
St moments. There—

fore, we are led to the design of suboptimal estimators. The technique pro-

posed here is motivated by the highly successful use of folded normal assumed

density approximations in the phase tracking problem (4]; filters designed

using this technique performed very well as compared with other suboptimal

estimators. We will describe similar techniques f or the design of suboptitnal

estimators on S~ and SO(n). 
-

- —
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We first review the notiQns of Brown ian m otion and Gaussian densities

on Lie groups and ho iogeneous spaces. Yosida r28] pro ved that the funda-

mental solution of

~

p(x ,t) 
— y~ p(:<,~ ) = 0 (20)

where y > 0 and ~ is the Laplace—Beltrami operator (Laplacian) on a R.ieman—

nian homogeneous space M (5,13,29], is the density (with respect to the Rie--

mannian measure) of a Brownian motion on M k

According to (p3, the fundamental solution of (20) is given by

—x1(t— t0)y
p(x,t;x0,t0) = ~ ~1(x) +1(x0)e (21)

i 
-

where and are the elgenvalues and the corresponding eigenfunctions of

the Laplacian (see the Appendix). The function p(x ,t; x01 t0) is the solution

to (20) with initial condition equal to the singular distribution concentrated

at x = x0 . Also,Grenander [27] defines a Gaussian (normal) density to be the

solution of (20) for some t .
- The folded normal density F(8;11,y) used by Wh isky as an assumed

density approximation for the phase tracking problem is indeed a normal 
- -

density on S~ in the sense of Grenander [4]; in fact , the trigonometric

polynomials e~~~~ are eigenfunctions of the Laplacian on &. Motiva ted

by the success of WHisky’s suboptimal filter , we will design suboptimal

estimators for the SO(n) and S
n bilinear systems by employing normal assumed 

-

- ~ Yosida defines a Brownian motion process 
to be a temporally and spatially

O homogeneous ?4arkov pr ocess on M which satisfies a continuity condition of
Lindeberg ’s type. -

0 

p

9
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conditional densities of the form

p(x ,t) ~ •1
(x)~~ 1

(r~(t ) )~~ 
1 - (22)

1

where rI(t) and y(t) are parameters of the density which are to be estimated.2
/

I

2 In order to assure the existence of a conditional density, it is sufficient
to assume that the system is “controllable from the noise” [10 ,13,17] .

10
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III. . ESTIMATION ON Sn

In this section ~he suboptima l estimation technique discussed in

the previous section will be used in order to design filters for the S5

estimation problem (1),(9)-, The optimal constrained least—squares estimator

is described by (14) and (18)—(19). First, the suboptinal estimator for

- s2 will be described in detail; then the generalization to S~ will be

O discussed . -

In our discussion of estimation on S2, we will refer to a point on

S2 in terms of the Cartesian coordinates x ~ (x1,x2, x3) or the polar

- - coordinates (0,,) (see the Appendix, in which harmonic analysis on S~
is s3immarized) . According to the Appendix , the spherical harmonics

(defined in (A.1l)—(A.12)) are the eigenfunctions of the Lap lacian A 2

(defined in CAb )), and all spherical harmonics of degree 2. have the same

elgenvalue —L (Q.+1) . Thus the assumed density approximation is a normal -

density on S2 of the form (22) , as discussed in the previous section:

- 
p( 9 ,~~,t) = 

~ ~~~m~°’P~ 
Y*~~m

(~~(t) ,X(t))e
_

~~~
L+ l)Y ( t )

. (23)
L=0 m=-~

where * denotes comple x conjugate. In other words,

C
2.

(t ) ~ E
t(Y~ (0(t),~ (t)] = Y (rlW,X (t))e t+

~~~~
t) 

. (24)

in order to truncate the optimal estimator (18)—(19) a f ter  the

x ’ J
(~~~~ ) equation using the assumed density (23), we must compute

Et(x (~~(t)x~(t)], or equivalently, ~~~~
11 t~t , in terms of

p 1,2,. ..,N. However , if x(t j t) is known , so are c10(t) and c11(t). A

11
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simple computation (13] , [221 then shows that (C N+l ,m. =

can be computed from

cN÷ 1 ,m (t) Y*N÷l , m~~
1(

~ ~~~~ 
(t) ) e (N+ 1) (N+ 2) 

~~
‘ (t)

— — 
m IlN+l-m)! 2N÷31’~ / c

10
(t)

— ( ‘~ L(N÷ 1+ m)! 4,~ J ~N# 1 , m ( 2 2 2— 1
- \(C10(t)+21C 11(t)I )~j

/c (t) \ m/2 
* (Ni- 1) (N-~-2)

(
\c3~1(t) ) i 1(~2 (t)÷2fr~~(t)!2)] (25)

where are the associated Legéndre f unctions (see (A.4l)—(A.l2)~ , Finally,

it is shown in (13) tha t there exists. a nonsingular matrix T such that

Y (x)

— (N— li -

L’c - -

Thus X~~~~~~~
1
(t f t) can be computed from {CN+1 m~ 

—(N+l) ~ ni ~ N+l} and 
- 

- 

—

The optimal estimator (18) is truncated by substituting this 
-

approximation for ~
(:N+ 1l (t It) into the equation for ~

[NJ (t Jt). Notice that
the entire procedure for truncating the optimal estimator can equivalently

be performed on the infinite Set of coupled equations for the generalized - 
-

Fourier coefficients c~~~ (t) , using the approximation (24) .

- 
We note that one can show that

o’ (t) ~ Jtf~(tIt)II �1 0 

-

and this quantity can be used as a measure of our confidence in our estimate .

If ~ (t l t) satisfies the assumed density (23) ,

a Ct) = ~~(t I~
) ii = e~~ 

(t) (27)

so y = 0 (zero “varlance ) implies a = 1, and y (infinite “variance ”) implies

a = 0 (see (4) for the S1 analog) . 
- -

12
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Example 1: Suppose that we truncate the optimal S
2 estimator (18)

af ter  N ~~~~~~~ we app roximate ;E2](~ j~) using the above approxitnation 1 - -

S Assume that Q(t) = I and {A1, 1=1 , 2 ,3) are given. Then the resulting

suboptimal estimator is (for Q(t ) = 1)  -

N 2 , .  -
-

dx(t It )  = [A0 + -
~~ E A. I x(t j t)dt

i=1

+ P(t)H’(t)R 1(t) [dz2 (t) — H(t)~ (t lt)dt] (28)

where the “ covariance ” matr ix P(t) is given by

p
11(t) = ~(t lt)(~- 1I~(t)t)3I — 1) — 

~~~
- 

~~~~~~~~~~~~~~~~~~~ ~ (29)

for i~1j, i~1k , j~ E k , and

P1.(t)~~~1(t I t )~~(t~t) ( 11X(t 1t) j1 — 1) 
- 

(30)
- 

for i~~ j. It is shown In [37] that the matrix P(t )  of (29)— (30) is positive
sernidefinite , and thus can be viewed as a covariance matrix. The results of
Monte Carlo simulations to evaluate the performance of this estimator are
presented in Section VII. 

- -

- The extension to 5” of .his technique for cons tructing suboptimal

estimators is straightforward . The procedure uses the spherical harmonics

- 
on ~~ In polar coordinates , a point on S~~ can be described - by - - -  

(01,02 ,. .., e i’~ ~ (0 ,$), . where 0 <O O
j  

<- u -and 0 <  •- c  2ir . Also,- the -

- spherical harmonics are denoted by - - - -

0Y
L~~~~

(el cP) A Y
L,m ,...,m l

(e
i~~

...s en_is±cP) -

±j m 
~ n-2 

rnk 1 mk 1-,-~~(n-k-1)
= e ~ 1 ~ (sino k+l) 

+ Cm tm (cos ek ~k=0 k ki- 1 +

(31) 

13
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where .t ~ ... �m 1 � 0 and C~ are the Gegenbauer polynomials (33]

(that is , the functions Y
2 ~~ 

are eigen furu ~tio ns of the Laplace—Bc]trami.

operator with eigenvalue —i (n+~—l)). Hence the assumed density approximation 
-

n .  -onS is - 
0~~~

p( O,p , t) = E Y1~~~~(e,~ ) Y*~~~~ (~ (t) , X (t))e 
+ 1)Y(t) 

(32
L,(m)

That is , CL (m)
(t) AEt[Y~ (m) (8(t)~~

t
~1 is assumed to be 

0

C L (m)
(t) _

~~~ , (m) t)
~~~ t”e . (33)

The procedure for trunca ting the filter ( 18) is identical to the S2 case.

If ~(t I t) is known , so are c (t) , and these can be used to compute y (t) ,

11(t) , and x (t) . Then (cN+l , (m) (t) } can be computed from (33) , and ~~ 
1)(t (t)

can be computed from (C
N÷ 1, (m)(t) 

} and ~~ 
- 1(t t) . The estimator is truncated

A [N+ 1)by substituting this approximate expression for x (t It) Into the equation

(18) for ~
(N] (t I t)

-t -

14 
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IV. ESTIMATION ON S0(n)

In this section we discuss the construction of suboptimal estimators

for the SO(s) estimation problem (7)—(8). We will only consider . the SO(3)

problem; the results are extended to SO(s) in [13]. The concepts of harmonic

analysis on SO(3) presented in the Appendix will be used extensively.

Consider the sequence [D 
L , L = 0 , 1, . . .)  of irreducible unitary

representations of SO(3), as defined in (A.5)-(A.6) . TheoremA .l implies

that , for fixed L ,  the matrix elements CD~~ ; -L ~ m ,n � ~ are eigenfunctions

of the Laplaclan A30(3)
(defined in (A.4))with the same elgenvalue. X ;  also ,

all eigenfunctions of the Laplacian can be written as linear combination of

the [D i ). Hence , the assumed density which will be used to truncate the

optimal estimator (16)-(17) Is a norm al density on 80(3) of the form (22) :

p(R ,t) = ~ D~, ~ (R) D~ n (~1(tfl
*e L -(34) 

0

L 0  m ,n=—~ ‘ S 
-

where R , 11(t) £ S0(3) and y(t) is a scalar . That is , -

c~,5(t) A Et[D~~5O1(t)) *] (35)

is assumed to be

L * 
—X y(t)

c L (t) = Dmn (11(t)) - e £ (36)

The procedure for truncating the filte r (16) Is similar to the 8’~ case ,

although we make use of some additiona l concepts from representation theory.

If X(t~t) is known, so are [c’ (t) ; — l � m ,n � 1), since D1 is equivalent to

the self—representa tion of 80(3). Define the matrix CL(t) with elements
• 

c~~~(t) , -L � m ,n � ~; then

— I 1 1 ‘ 1  ~~~~~~~ 
- -

A(t) — C (t)C (t) = ID (11(t))] ID (11(t))) e

15 
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—2X y(t)
= I .e  1 (37)

since D’ is unitary (here C Is the herrnitia n transpose of C).  Thus y(t) can

be computed from

- It y(t) = —j~~ log 1* tr A(t) ] . (38)
1

Then the elements of 11(t) can be computed from (36) and (38) , since D’(11(t))

is similar to 11(t) . Once y(t) and 11(t) have been computed , fc~~~ ;
— IN+ 1) � m , n � N+ 1) are computed from the formula (36).

In order to truncate(16) after the N th moment equation , we must

approxima te Et[X~~~(t)h 1 (t)X(t)) ; however , this ma trix consists of time-varying
V *(N÷1]determin1~ tlc functions multipl ying elements of X - (t It) , so we will show

how to approximate this matrix. The symmetrized Kronecker ~th power x~~
- . operating on the symmetric tensors x~~~such that = 11xll

p 
1 furnishes

a representa tion of S0(3) which is reducible [26] . It is shows in (13] that

there is a nonsingular matrix T such that

- DP~X) 0
TX 1

~~ T 1 
= [ ~21 • (39)

0 X~~~~

The matrix T is related to the Clebsch—Gordan coefficients [6], but T can

also be computed by the method of Gantmacher (34 , p. 160]. It is clear
0 

from the decomposition (39) that ~~~
+1] (t It )  can be computed from

and )~
M h ] (t It) . The optimal estimator (16) is truncated by substituting

this approximation into the equation for (t t).

-We note here that, due to the decomposition (39), the estimation

-

~ ~j equations and the truncation procedure could have been expressed solely-

in terms of the irreducible representations D~ (X(t)) . However , we have

chosen to work with the equations primarily for ease of notation . For

large N , the D~ equations would provide significant computational savings

over the equations , as these are redundant; however , the practical

implementation of this technique will probably be limited to small values of N .

—- - -- 
~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _



- 0S~~~ 0-

- - V. SIMULATION RESULTS

-

- 

As an illustration of the techniques presented in the previous sections ,

the first order filter (FOF) of Example 1(Section III) was evaluated by means

of digital Monte Carlo simulations . It was compared to both the extended

Kalman filter (EKF) [71 and the Gusta fson-Speyer linear , minimum—variance

quadrature filter (LQF) [24] . Identical noise sequences were used to allow

direct comparisons. -

2The system considered was the S system , i .e.,
/

3
dx(t) = Fx(t) d t+  E A. x(t) dw1(t) (40)

1=1

dz(t) = x(t) dt + r1~’2 dv(t) (41)

3 3 -

where F = I f1A~ +-~ c I A~
2
~ and {Ai,i 1,2,3} are the skew—symmetric

1=1 i=l

matrices -

- 
0 0 0  0 0 1  0 — 1 0

A1~~~~0 0 — 1  A2 = 0 0 0  A3 = 1 0 0  (42)

0 1 0 —1 0 0 0 0 0 
-

Also, w(t) has strength qI; and v has strength I. In this experiment, - 

-

the nominal angular velocities {f~,i112,~ were chosen to be 100.0, and

q and r were varied.
0 

- - For all three filters , the normalized estimate x(t) = (t It)/ ll~(t It) ~~ 
wa~

used . The filters have an identical structure for the approximate ~c equation:

- dx(tlt) = Fx(t l t) + -~- P(t) [dz(t) — ,~(t 1~
)
~
] • (42)

- 

However, for the FOF , P(t) is given by the highly nonlinear memoryless

equations (29)—(30). In the EKF , P(t) satisfies the Riccati equation 
-

ä~
P(t) = FP(t) + P(t)F’ + qG(x ( t ft ) ) C ’(~(t~t) .-. ! P (t) P ’( t ; (43) 

—

where

G(~) = (A1L A~~ , A3~) . (44)

Since the Riccati equation (43) is a function of x(tlt), the P(t) calculation

in the EKF requires extensive on—line computation, which represents a con—
siderable burden. 17
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In the LQF, P(t) is given as the solution of the coupled dynamic equations

P(t) = FP(t) + P(t)F’ + ~(X( t ) , t) — -~~~ P( t)P’(t) (45)

X(t) =- FX(t) + X(t)F’ + A( X (t) , t ) (46)

where ~ (X(t ) , t) is a diagonal matri x with ith component
/

3
A(X(t),t)1 

= q -E ( A )
ik ( A ) . L XkZ

(t) (47)
kt ,m=1

Notice that these equations for P(t) and X(t) can be calculated off—line,

but the LQF thus has a considerable storage requirement. Because P(t) in

the FOF is only given by a meinoryless nonlinearity, this filter requires
considerably less storage than the LQF and less on—line computation than the
EKE.

Our approach to the statistical analysis of the Monte Carlo simulations

closely parallels that of Bucy and his associates [ii, [3], (35]. The steady—

state mean—squared error -

= E [IIx(t) - ~ (t) 1121 = E[(x (t) - ~ (t))
2] (48)

1=1 1

where x1(t) denotes the estimate of the ith component of the state x1(t) , was
used as the performance criterion. If [x5) and i -= 1 ...,N, are se-
quences of independent realizations of x(t) and ~ (t) ,. respectively, then the

statistic
N

1 n “n2p 2 E lix — x - (49)
n=1 - 

-

is an approximation to for sufficiently large N. In fact , by the Central

Limit Theorem (36 , p. 2 78) , 
~2 is asymptotically normal with 0

= 

~
‘2 

(50)

var = ~ ~~E(p4
)1
+ 2(

~4
)j2 + 2(~4

)I3 + 2(~4
)23 

— ( p ) 2~ (51)

where (i~4)1 Eflx1(t) — x1
(t)) I and

_----0-_— ------—
~

-—-
~

0---- -—_
~
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= E[(x
1(t) 

— x~(t))
2(x~(t) — ~~(t))

2J. - -

Thus , ~or large N , with probability 0. 9974 , the 3~ confidence interval is

given by

~p2 
— � 3/var 

~~~ 
(52)

or equivalently,
* a

~~
‘2 � 1_ ~~ ,,~

-j=O .9974 (53)

where - -

var
. 

- (54)
(~ 2)

2 
- -

In the Monte Carl o simulations , ~ was estimated from the samples (using

sample means as in (49 )) ,  and approximate confidence intervals were thus

computed.

In the experiment, 15 sample paths , each of which contained 1000-

steps of length .001 seconds , were run in each simulation. The first 200

samples in each sample path were discarded to allow the transients to decay, 
—

so the remaining 800 samples represented steady—state . If all the steady-

state errors were averaged as in (49), this would lead to 12000 samples of

the steady—state error . However , as noted in [4], [24] and (35], adjacent

errors in each path are correlated , so the effective Monte Carlo length is

somewhere in the range between N=1200 and N=12000. The three standard

deviation confidence intervals were calculated for both values of N.

The results of the simulations are presented in Table I. The 3c7

confidence intervals I~ ( for N = 12000) and 12 (for N = 1200) are shown.

The results of this approximate statistical analysis of the Monte Carlo

simulations indicate that , for this simple example , the FOF

performs comparabl y to the LQF , and better than the BK!.

The FOF seems to perform better in comparison to 
0

19
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the other filters as q Increases , due to the increasing dominance of the
bilinear noise term in the system equation (40). These results are significant ,
due to the fact that the FOF designed here requires considerably less storage
and computation than the other filters (no additional differential equations or
storage for P(t)  are required) . -

M.S. Error I~ 12
- 

%j
2 

(N=12000) (N=1200)

q = 0.01. FOF 9.65 (9.41 ,9.911 [8.92,10.52]

EKF 10.21 [9.96,10.48] [9.45,11.11)
= 0.01 

LQF 9.49 
- 

[9.26 ,9.751 [8.78,10.34]

q = 0.01. FOF 11.69 (11.39,12.01] [10.79~,l2.771

EKF 11.75 [11.44,12.071 110.84 ,12.82 ) .
r = 1.00 

LQF 11.69 (11.39 ,12.01] [10.79,12.771

q = 1.00 FOF 170.38 (165.26 ,175.82] 1155.19,188.87]

- EKF 193.75 [188.74,199.04] (178.74,211.51]
- r = 0.01.

- LQF 170.65 [165.58 ,176.03] 1155.60,188.92]

Table I. Monte Carlo M.S. Estimation Error(s) 
-

j  - 

. (x10~~) 
- 

- 

- 
- 
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VIII. CONCLUSIONS

The state estimation problem for bilinear stochastic systems evolving
on compact Lie groups and homogeneous space has been considered . The
techniques of harmonic analysis on compact Lie groups have been applied to
the design of suboptimal estimators for such systems . Monte Carlo simula-
tions of a simple example indicate tha t a computationally simple filter designed ’
by these methods performs favorably as compared to two other filters.

I!’
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APPENDIX — HARMONIC ANALYSIS ON COMPACT LIE CROUPS

In this appendix we sumrnarize so~ie facts froa the theory of liarri~uz~ic

analysis on Lie groups. For details of group representations see references

[5,6,13,29,30].
/

Definition A.1: A finite-dimensional matrix representation of a

compact Lie group G is a continuous homomorphism D which maps C Into the

group of nonsingular linear transformations on a finite dimensional vector

space V. The representative ring of G is the ring generated over the field

of complex numbers by the set of all continuous functions D
ii 

on C which

are matrix elements of some irreducible representation D. - -

The Peter—Weyl theorem is the major result in harmonic analysis on

compact Lie groups (5,6,29,30]. It gives the direct sum decomposition of

the space of square Integrable functions with respect to the }Iaar -

measure dg: - -  - - - - 
—

- - 

(A.1)
L2
(G) = 

-

where A is the set of equivalence classes of finite dimensional irreducible

representations of G, and V~ denotes the vector space spanned by the

functions [D
o ; i ,j=1 ,...,n 1. —

~0’~~~

The Laplace—Beltranii operator (Lap lacian) on a Lie group or Rie.mannian

homogeneous space is discussed in [s], [13] and [29]. Some examples will be

presented here, but one very important result for our purposes is the following.

22
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Theorem A.]. [5, p. 40), [29, p. 257): Let G be a compact Lie group,

and let V be defined as in equation (A. 1). Then each function cp c V is an

eigenfunction of the Laplacian j~~, and all e ~ V have the same elgenvalue

• Conversely, each eigen func tion ~ of the Lap iecian is an element of the
representative ring .

Hence , harmonic analysis on a compact Lie group can be performed

either in terms of the representative ring or the eigenfunctions of the

Laplacian , since these two sets of functions are the same . In this paper we
are primarily concerned with the application of these results to the special
orthogona l group SO(n) and the n-sphere S~~.

The Lie group SO(n) is defined by

SO(n)= (X c Xfl tx ix i de t X = + 1 1  . (A.2 )

The theory of representations of 50(n) is discussed in [13], [26]; for this -

paper we need only consider SO(3) . Any matrix R in SO(3) can be described

in local coordinates in terms of the Euler angles ç, 0, ~p , d omain -

0 < < 2ir , 0 < 0 < 2ir , 0 < 4, < 2-it [6]. An element of SO(3) will thus

be denoted by R(~,0,4,) or just (4,,0,4,). -

In the Euler angle coordinates , the (unnormalized) Haar measure is - 

-

- d 1,. ( cp , 0 , T )  = sin0dcp d 0 dy (A.3)

and the corresponding Laplace-Beitrami operator is given by [31]

~SO(3) sln9 ~~ 
(sin$~~~)+ ~~2 

-2cos 6 (A.4)

Talman (61 computes a sequence D L (c.~, e, -?) , I = 0 , 1, . . . ,  of unitary

Irreducible representations of S0(3); its ma trix elements are given by

= 1m—n e im
~~d L (0)e 1

~~ (A .5)

where - - -

23

Lk — 
~~~

-- -- -
~~~
--—--- 0--- — —~~~~~ —— --~~~~-~~-0- ————0--- - - --  —0- -- - -- - ~~~~~~0~~~ —-—0-—— ——



- 

d2 (9)- 
- 

1) t ~~L+m) ! (L :mJ~~~L+ flft(2~ n) !] 2
mn — 

(2+m—t) ! (t+n-rn) ! t!  (~ —n-- t) !

2i~+;u—n— 2t ‘
~~~~\ 2 t ÷ n—m /

(~ -) sin (A .6)

for -L � rn , n � 2. Here t is summed over all nonnegative integers such that
the arguments of the factorial functions in (A .6) are nonnegative; i .e.,

m - n � t � 2 ÷m , 0� t � 2 _ f l .

In fact, these are (up to equivalence) all of the irreducible representations of
S0(3) . The Peter-Weyl Theorem yields the decomposition

L2~ 0(3)) = ~~~ V 
- 

(A.?)2 -

where H
2 

is the vector space spanned by the (22+1) 2 
functions

n+l , . -The n—sphere S = {xc ]R Ix x = i} is diffeomorphic to the homoge-

neous space SO(n)/SO(n—l). Harmonic analysis on 5n is studied in terms of

the spherical harmonics [6,30,33]. The space 11L of spherical harmonics of

degree £ can be characterized as the eigenspace of the SO(n+l)—invariant

n on S~ with elgenvalue —i(n—l+2.); other equivalent characterizations areS
given in [131. -

In particula r , we consider the 2—sphere S2. Any point (x1,x2,x3)

on s2 can be expressed in the polar coordinates (0,4)), where 0 < 0 <

O < 4’ < 2-i, by defining

- x1 = cos9; x2 = Sin G COscp; = Sifl9 S111C0 . (A.8)

The Riemannian measure invariant under the action of S0(3) is

d~i. (e ,~~) = s i n 9 d e d q~ . (A.9)

The corresponding Invar iant  Laplace— Beltrami operator is

24
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A
52 = 

~~~ [~~ 

(s inef)  + 
~~~~ ~~~~

]. 

- 

(A.l0)

The normalized spherical harmonics of degree 2 on S2 are defined by [5)

- Y (e,~ ) = (_ 1) m 
[~~~~~;~~~~~~~~ 

(2~~÷ 1)] 
~ 

P 2 (cos O) elmP 
(A ll) 

-

,

Y2 , _m (0 i~P) = ( 1 ) m~~~~ (0 ,~,) (A.].2)

for 2=0 , 1, . . .  and m =  O 1 , . .. , L, where P Lm~COS 8) are the associated

Legend re functions and * denotes complex conjugate . Notice that is an

eigenfunction of A 2 wIth eigenvalue —L( L+l) . - -

O S - - -
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